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In their classic work, Schiberg and Mustafa found that  Scheme 1
irradiation ofortho-quinones in the presence of olefins with visible
light leads to the formation of dihydrodioxins (DHDs) (Scheme
1).! It was later observed that this reaction is reversed with UV

0} O
light (364 nm)? and thus, this photochemistry might constitute a Q o hv (visible)
useful tool for masking highly reactivertho-quinones. Using this —_—
masking strategy, dihydrodioxins have been shown to be effective <
DHD

DNA photocleaving agentsin an effort to elucidate the mechanism hv (UV)
of this quinone photorelease, we have studied the photochemistry
of PDHDs1 and2 (Scheme 2), which are known to be among the
more effective DHD-based DNA photocleaving agents. During the ¢, ,
course of these studies, it has become clear that the photochemistry
of PDHDs constitutes a unique example of an autosensitized PET
system that proceeds through an unusually stable radical cation.
The relative quantum yields for pyrene-4,5-dio8grélease from

OR
PDHD 1 with UV light* have been found to be highly solvent Q o Q
dependent. The initial quantum yield in GQFigure 1) is 0.078 hv RO OR QQQ

1R=CH;
2 R = -(CH,);N*(CH;); CI'

o o 0

+ 0.003, 23 times more efficient than that in benzene, and the CHy 7
isolated/purified yield o8 is 78%. Since CGlis known to function 3
as an electron acceptor in photochemical reactiahs, effect of RO OR

other, more conventional, electron acceptors on quinone release hv (Visible) | hv (UV) L& 6 o,

was investigated. Indeed, the addition of phenanthrenequinone or 3 ¢

quinone3 greatly accelerated the release of quin8rend makes l
it possible to trigger quinone release with visible light at wave- *  OR

*CH;
. . 3
lengths that are not absorbed by In unsensitized reactions, UV O
light is only necessary for the initial release of a small amount of
OR

€

s
®
oI U
quinone3, which thereafter serves as a photosensitizer for further

OR
. R S o o o

quinone release with visible light in the autosensitized mode. The 4 Aorhv )

release of3 from the water-soluble PDHI2 was also examined /

and found to be dramatically enhanced by the addition of methyl
viologer’ and FADE Finally, while the release o8 does occur
under anaerobic conditions, its rate is significantly increased in the case of4, the very conspicuous band &ha = 453 nm can be

presence of oxygen. observed by transient spectroscopy in a number of solvents. Many
In general, DHDs are most interesting molecules in that they of these solvents, such as GQiroduce unidentified transients that
form relatively stable radical cations in solutid®DHD 1 is no tend to obscure the spectrum 4f However, in acetonitrile, a
exception. Thus, treatment df with tris(2,4-dibromophenyl)- pristine spectrum oft is obtained, as shown in Figure 3. Under
aminium hexachloroantimonate (DBAHA) leads to the immediate these conditions, the lifetime @f (r = 6.3 4 0.1 us) tends to be
formation of a red-orange solution of the radical catib(Figure much shorter than when it is generated using the DBAHA method.

2).1°Radical catiort is stable for minutes to hours, depending upon This is certainly due to the occurrence of reverse electron-transfer
the conditions of its generation, and ultimately decays with near- processes in the photosystem that are not active under the DBAHA
quantitative release 08. As shown in the inset in Figure 2,  conditions.
irradiation of the 453 nm band of with visible light greatly These observations are summarized in Scheme 2, where some
accelerates its decomposition. These experiments provide directpossible pathways for the fragmentatiordodire outlined. Thus4
evidence tha# is not only thermally labile but also photochemically  probably extrude8 and the olefin-derived radical catidi which
labile, and that both pathways lead to the extrusioR.of might either acquire an electron by reverse electron transfer to form
In fact, the direct excitation af with UV light also leads to the 6 or participate in a radical chain mechanism to generate another
formation of radical catiod by photochemical electron ejection.  molecule of4 by any of several possible rout€sAlternatively, 5
This process can be observed by transient spectroscopy (Figure 3)might react with molecular oxygen to form benzophensA&Some
Transient spectra of other DHD radical cations have been observedvariation on these pathways is supported by the observation that
previously!! and these spectra exhibit behavior consistent with olefin 6 and corresponding benzophenohare formed as major
spectra generated by the aforementioned DBAHA process. In the products in these reactions.
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Figure 2. Absorption spectra of (black) and its radical catio (red) in
hexanes/ChkCl, (98:2). Inset: normalized absorption (450 nm)4oés a
function of time; thermal decay (red) and irradiation at 4524 nm (blue).
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Figure 3. Transient absorption spectrum of radical catidrn ACN,
generated with 350 nm irradiation.

help in the acquisition of the transient radical cation spectra, and
the Department of Chemistry of the University of Cincinnati for
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Supporting Information Available: Synthesis and characterization
of 1 and2. This material is available free of charge via the Internet at
http://pubs.acs.org.

References

1)
(2
®

4

=

G

~

®

~

@)

®)
(©)

(10)

(1)

(12)

(13)

On the basis of these observations, we are extending the study

of this photochemistry into DNA cleaving agents that can undergo

internally sensitized quinone reledSe.
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